Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(3): 2702-2714, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309291

RESUMO

OBJECTIVE: Tendinopathy is influenced by multiple factors, including chronic inflammation and aging. Senescent cells exhibit characteristics such as the secretion of matrix-degrading enzymes and pro-inflammatory cytokines, collectively known as senescence-associated secretory phenotypes (SASPs). Many of these SASP cytokines and enzymes are implicated in the pathogenesis of tendinopathy. MicroRNA-146a (miR-146a) blocks senescence by targeting interleukin-1ß (IL-1ß) receptor-associated kinase 4 (IRAK-4) and TNF receptor-associated factor 6 (TRAF6), thus inhibiting NF-κB activity. The aims of this study were to (1) investigate miR-146a expression in tendinopathic tendons and (2) evaluate the role of miR-146a in countering senescence and SASPs in tendinopathic tenocytes. METHODS: MiR-146a expression was assessed in human long head biceps (LHB) and rat tendinopathic tendons by in situ hybridization. MiR-146a over-expression in rat primary tendinopathic tenocytes was achieved by lentiviral vector-mediated precursor miR-146a transfer (LVmiR-146a). Expression of various senescence-related markers was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunoblotting and immunofluorescence. MiR-146a expression showed a negative correlation with the severity of tendinopathy in human and rat tendinopathic tendons (p<0.001). RESULTS: Tendinopathic tenocyte transfectants overexpressing miR-146a exhibited downregulation of various senescence and SASP markers, as well as the target molecules IRAK-4 and TRAF6, and the inflammatory mediator phospho-NF-κB. Additionally, these cells showed enhanced nuclear staining of high mobility group box 1 (HMGB1) compared to LVmiR-scramble-transduced controls in response to IL-1ß stimulation. CONCLUSIONS: We demonstrate that miR-146a expression is negatively correlated with the progression of tendinopathy. Moreover, its overexpression protects tendinopathic tenocytes from SASPs and senescence through the IRAK-4/TRAF6/NF-kB pathway.


Assuntos
MicroRNAs , Tendinopatia , Animais , Humanos , Ratos , Citocinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fenótipo Secretor Associado à Senescência , Tendinopatia/genética , Tenócitos/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
2.
Neurochem Res ; 49(4): 949-958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157112

RESUMO

The study was aimed to validate the efficacy of the pulsed Nd:YAG laser on nerve regeneration in a rat sciatic nerve crushed model. 54 Wistar rats were randomly assigned into three groups: shame control, crush control, and laser treated group. For the laser treated group, the pulsed Nd:YAG laser (10 Hz) with 350 mJ per pulse in energy density and 50 J/cm2 in fluence was applied extracorporeally at the lesion site for 12 min to daily deliver 500 J immediately and consecutive 9 days following the crush injury. At week 1, the apoptosis-related activities in the injured nerve were examined (n = 8/each group). The sciatic functional index (SFI) was measured preoperatively and weekly until 4 weeks after the index procedure. The injured nerve and the innervated gastrocnemius muscle histology were assessed at week 4 (n = 10/each group). At week 1, the laser group showed the significant less TUNEL-positive ratio (P < 0.05), and the lower expression of cleaved caspase3/procaspase-3 and beclin-2/beclin-2-associated protein X ratios compared with the crush control. Furthermore, the laser group revealed significantly better SFI since week 1 and throughout the study (P < 0.05, all) compared with the crush control. At week 4, the laser group showed significantly higher axon density, lower myelin g-ratio, and the corresponding higher glycogen expression (P < 0.05, all) in the gastrocnemius muscle compared with those in the crush control. The pulsed Nd:YAG might enhance the injured nerve regeneration via apoptosis inhibition.


Assuntos
Lesões por Esmagamento , Terapia a Laser , Lasers de Estado Sólido , Neuropatia Ciática , Ratos , Animais , Ratos Wistar , Compressão Nervosa , Nervo Isquiático/lesões , Regeneração Nervosa/fisiologia , Neuropatia Ciática/patologia
3.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298447

RESUMO

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with enhanced NETosis and impaired degradation of neutrophil extracellular traps (NETs). Galectin-3 is a ß-galactoside binding protein and is associated with neutrophil functions as well as involved in mediating autoimmune disorders. In this study, we plan to examine the associations of galectin-3 with the pathogenesis of SLE and NETosis. Galectin-3 expression levels were determined in peripheral blood mononuclear cells (PBMCs) of SLE patients for the association with lupus nephritis (LN) or correlation of SLE disease activity index 2000 (SLEDAI-2K). NETosis was observed in human normal and SLE and murine galectin-3 knockout (Gal-3 KO) neutrophils. Gal-3 KO and wild-type (WT) mice induced by pristane were used to evaluate disease signs, including diffuse alveolar haemorrhage (DAH), LN, proteinuria, anti-ribonucleoprotein (RNP) antibody, citrullinated histone 3 (CitH3) levels, and NETosis. Galectin-3 levels are higher in PBMCs of SLE patients compared with normal donors and positively correlated with LN or SLEDAI-2K. Gal-3 KO mice have higher percent survival and lower DAH, LN proteinuria, and anti-RNP antibody levels than WT mice induced by pristane. NETosis and citH3 levels are reduced in Gal-3 KO neutrophils. Furthermore, galectin-3 resides in NETs while human neutrophils undergo NETosis. Galectin-3-associated immune complex deposition can be observed in NETs from spontaneously NETotic cells of SLE patients. In this study, we provide clinical relevance of galectin-3 to the lupus phenotypes and the underlying mechanisms of galectin-3-mediated NETosis for developing novel therapeutic strategies targeting galectin-3 for SLE.


Assuntos
Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Humanos , Camundongos , Autoantígenos/metabolismo , Armadilhas Extracelulares/metabolismo , Galectina 3/metabolismo , Hemorragia/metabolismo , Leucócitos Mononucleares/metabolismo , Nefrite Lúpica/patologia , Neutrófilos/metabolismo , Proteinúria/metabolismo
4.
Microorganisms ; 11(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375032

RESUMO

The imbalance of mucosal immunity in the lower gastrointestinal tract can lead to chronic inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis. IBD is a chronic inflammatory disorder that causes small and/or large intestines ulceration. According to previous studies, recombinant interleukin (IL)-10 protein and genetically modified bacteria secreting IL-10 ameliorate dextran sulfate sodium (DSS)-induced colitis in mice. IL-19 is a transcriptional activator of IL-10 and can alter the balance of T helper 1 (Th)1/Th2 cells in favor of Th2. In this study, we aimed to investigate whether the expression of the murine IL-19 gene carried by Salmonella choleraesuis (S. choleraesuis) could ameliorate murine IBD. Our results showed that the attenuated S. choleraesuis could carry and express the IL-19 gene-containing plasmid for IBD gene therapy by reducing the mortality and clinical signs in DSS-induced acute colitis mice as compared to the untreated ones. We also found that IL-10 expression was induced in IL-19-treated colitis mice and prevented inflammatory infiltrates and proinflammatory cytokine expression in these mice. We suggest that S. choleraesuis encoding IL-19 provides a new strategy for treating IBD in the future.

5.
J Biomed Sci ; 29(1): 104, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471329

RESUMO

BACKGROUND: Cisplatin-based chemotherapy is the first line of treatment for bladder cancer. However, cisplatin induces muscle wasting associated with NF-κB and cancer cachexia. HOTAIR, an oncogenic long non-coding RNA (lncRNA), promotes cancer progression in different cancers. Crosstalk between HOTAIR and NF-κB is documented. Prothymosin α (ProT) plays important roles in cancer progression and inflammation. However, the potential link between HOTAIR, ProT, and cisplatin-induced cancer cachexia remains unexplored. Here, we investigated the contribution of HOTAIR in cisplatin-induced cancer cachexia and dissected the potential signaling cascade involving the epidermal growth factor receptor (EGFR), ProT, NF-κB, and HOTAIR. MATERIALS AND METHODS: Expression of ProT and HOTAIR transcripts and their correlations in tumor tissues of bladder cancer patients and bladder cancer cell lines were determined by RT-qPCR. Next, levels of phospho-EGFR, EGFR, phospho-NF-κB, and NF-κB were examined by immunoblot analysis in human bladder cancer cells treated with cisplatin. Expression of HOTAIR in cisplatin-treated cells was also assessed by RT-qPCR. Pharmacological inhibitors and overexpression and knockdown approaches were exploited to decipher the signaling pathway. The murine C2C12 myoblasts were used as an in vitro muscle atrophy model. The syngeneic murine MBT-2 bladder tumor was used to investigate the role of mouse Hotair in cisplatin-induced cancer cachexia. RESULTS: Expression of ProT and HOTAIR was higher in bladder tumors than in normal adjacent tissues. There were positive correlations between ProT and HOTAIR expression in clinical bladder tumors and bladder cancer cell lines. Cisplatin treatment increased EGFR and NF-κB activation and upregulated ProT and HOTAIR expression in bladder cancer cells. ProT overexpression increased, whereas ProT knockdown decreased, HOTAIR expression. Notably, cisplatin-induced HOTAIR upregulation was abrogated by EGFR inhibitors or ProT knockdown. ProT-induced HOTAIR overexpression was diminished by NF-κB inhibitors. HOTAIR overexpression enhanced, whereas its knockdown reduced, cell proliferation, cachexia-associated pro-inflammatory cytokine expression, and muscle atrophy. Cachexia-associated symptoms were ameliorated in mice bearing Hotair-knockdown bladder tumors undergoing cisplatin treatment. CONCLUSIONS: We demonstrate for the first time a critical role for HOTAIR and identify the involvement of the EGFR-ProT-NF-κB-HOTAIR signaling axis in cisplatin-induced cachexia in bladder cancer and likely other cancers. Our findings also provide therapeutic targets for this disease.


Assuntos
Antineoplásicos , Caquexia , Cisplatino , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Caquexia/induzido quimicamente , Caquexia/genética , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , Receptores ErbB/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/tratamento farmacológico
6.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077117

RESUMO

Interleukin-23 (IL-23) plays a pivotal role in rheumatoid arthritis (RA). IL-23 and microRNA-223 (miR-223) are both up-regulated and mediate osteoclastogenesis in mice with collagen-induced arthritis (CIA). The aim of this study was to examine the association between IL-23 and miR-223 in contributing to osteoclastogenesis and arthritis. Levels of IL-23p19 in joints of mice with CIA were determined. Lentiviral vectors expressing short hairpin RNA (shRNA) targeting IL-23p19 and lisofylline (LSF) were injected intraperitoneally into arthritic mice. Bone marrow-derived macrophages (BMMs) were treated with signal transducers and activators of transcription 4 (STAT4) specific shRNA and miR-223 sponge carried by lentiviral vectors in response to IL-23 stimulation. Treatment responses were determined by evaluating arthritis scores and histopathology in vivo, and detecting osteoclast differentiation and miR-223 levels in vitro. The binding of STAT4 to the promoter region of primary miR-223 (pri-miR-223) was determined in the Raw264.7 cell line. IL-23p19 expression was increased in the synovium of mice with CIA. Silencing IL-23p19 and inhibiting STAT4 activity ameliorates arthritis by reducing miR-223 expression. BMMs from mice in which STAT4 and miR-223 were silenced showed decreased osteoclast differentiation in response to IL-23 stimulation. IL-23 treatment increased the expression of miR-223 and enhanced the binding of STAT4 to the promoter of pri-miR-223. This study is the first to demonstrate that IL-23 promotes osteoclastogenesis by transcriptional regulation of miR-223 in murine macrophages and mice with CIA. Furthermore, our data indicate that LSF, a selective inhibitor of STAT4, should be an ideal therapeutic agent for treating RA through down-regulating miR-223-associated osteoclastogenesis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Subunidade p19 da Interleucina-23/metabolismo , MicroRNAs , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/metabolismo , Interleucina-23/genética , Interleucina-23/metabolismo , Camundongos , MicroRNAs/metabolismo , Osteoclastos/metabolismo , Osteogênese , RNA Interferente Pequeno/metabolismo
7.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077161

RESUMO

The combination of cross-linked hyaluronate (cHA) and corticosteroid showed more rapid pain or functional improvement in knee osteoarthritis and adhesive capsulitis. However, rare evidence of this combination in treating tendinopathy has been reported. We hypothesized that the specific formulations of cHA and dexamethasone (DEX) conferred amelioration of tendinopathy via anti-apoptosis and anti-senescence. In this controlled laboratory study, primary tenocytes from the human tendinopathic long head of biceps were treated with three cHA formulations (cHA:linealized HA = 80:20, 50:50, and 20:80) + DEX with or without IL-1ß stimulation. Cell viability, inflammatory cytokines, tendon-related proliferation markers, matrix metalloproteinases (MMPs), senescent markers, and apoptosis were examined. The in vivo therapeutic effects of the selected cHA + DEX combinations were evaluated in a collagenase-induced rat patellar tendinopathy model. The expression levels of inflammatory mediators, including IL-1ß, IL-6, COX-2, MMP-1, and MMP-3 were significantly reduced in all cHA + DEX-treated tenocytes (p < 0.05, all). The cHA (50:50) + DEX and cHA (20:80) + DEX combinations protected tenocytes from cytotoxicity, senescence, and apoptosis induced by DEX in either IL-1ß stimulation or none. Furthermore, the two combinations significantly improved the rat experimental tendinopathy by reducing ultrasound feature scores and histological scores as well as the levels of apoptosis, senescence, and senescence-associated secretory phenotypes (p < 0.05, all). We identified two specific cHA formulations (cHA (50:50) and cHA (20:80)) + DEX that could ameliorate tendinopathy through anti-senescence and -apoptosis without cytotoxicity. This study provides a possible approach to treating tendinopathy using the combination of two well-known agents.


Assuntos
Tendinopatia , Corticosteroides/uso terapêutico , Animais , Citocinas/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Ratos , Tendinopatia/patologia , Tenócitos/metabolismo
8.
Mol Ther Methods Clin Dev ; 26: 157-168, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35846572

RESUMO

CD44 exerts anti-senescence effects in many disease models. We examined senescence in tendinopathy and the effect of CD44 on senescence-associated secretory phenotypes (SASPs). Senescent markers were determined in human tendinopathic long head of bicep (LHB) and normal hamstring tendons. CD44 gene transfer in rat tendinopathic tenocytes stimulated with interleukin (IL)-1ß and a rat Achilles tendinopathy model were performed using lentiviral vectors. Expression levels of p53, p21, and p16 and senescence-associated ß-galactosidase (SA-ß-gal) activity were positively correlated with the severity of human tendinopathy and were higher in rat and human tendinopathic tenocytes than in normal controls. CD44 overexpressed tenocyte transfectants exhibited reduced levels of IL-6, matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, p53, p21, p16, SA-ß-gal, and phospho-nuclear factor (NF)-κB, whereas their collagen type I alpha 1 (COL1A1) and tenomodulin (tnmd) levels were increased when compared with control transfectants under IL-1ß-stimulated conditions. In the animal model, CD44 overexpression lowered the ultrasound and histology scores and expression levels of the senescent and SASP markers COX-2 and phospho-NF-κB. Bromodeoxyuridine (BrdU)- and tnmd-positive cell numbers were increased in the LVCD44-transduced tendinopathic tendons. Senescence is positively correlated with tendinopathic severity, and CD44 overexpression may protect the tendinopathic tendons from SASPs via anti-inflammation and maintenance of extracellular matrix homeostasis.

9.
Mol Cell Biochem ; 477(11): 2529-2537, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35595956

RESUMO

Aberrant proliferation and migration of fibroblast-like synoviocytes (FLS) are major characteristics of rheumatoid arthritis (RA). MicroRNA-133 (miR-133) is a tumor-suppressive miRNA that targets various genes responsive for cell proliferation and migration. The aim of this study was to examine the effect of miR-133 on RA FLS. A high throughput miRNA microarray was performed in synovium from mice with collagen-induced arthritis (CIA). Expression levels of miR-133 and the putative targets were determined in synovium and FLS from patients with RA and mice with CIA. Overexpression of miR-133 in RA FLS was performed by lentiviral vector-mediated transfer of precursor miRNA (pre-miR). The expression of miR-133a/b was decreased in the joint tissue and FLS of CIA mice, as determined by miRNA array and qRT-PCR. Down-regulation of miR-133a/b expression could also be observed in synovium and FLS from patients with RA. Overexpression of miR-133 reduced cell viability and migration of RA FLS, with decreased levels of FSCN1, EGFR, and MET. Our findings demonstrated the inhibitory effects of miR-133 on FLS viability and migration, and might contribute to the pharmacologic development of miR-133 therapeutics in patients with RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Sinoviócitos , Animais , Camundongos , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Proliferação de Células/genética , Sobrevivência Celular , Células Cultivadas , Regulação para Baixo , Receptores ErbB/metabolismo , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Sinoviócitos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo
10.
Arthritis Res Ther ; 22(1): 114, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410713

RESUMO

BACKGROUND: Several lines of evidence suggest that the pathobiont Porphyromonas gingivalis is involved in the development and/or progression of auto-inflammatory diseases. This bacterium produces cysteine proteases, such as gingipain RgpA, endowed with the potential to induce significant bone loss in model systems and in patients. OBJECTIVE: We sought to gain further insight into the role of this pathobiont in rheumatoid arthritis (RA) and to identify novel therapeutic targets for auto-inflammatory diseases. METHODS: We profiled the antibody response to RgPA-specific domains in patient sera. We also tested the potential protective effects of RgpA domains in an experimental arthritis model. RESULTS: Pre-immunization of rats with purified recombinant RgpA domains alleviated arthritis in the joints of the rodents and reduced bone erosion. Using a functional genomics approach at both the mRNA and protein levels, we report that the pre-immunizations reduced arthritis severity by impacting a matrix metalloprotease characteristic of articular injury, a chemokine known to be involved in recruiting inflammatory cells, and three inflammatory cytokines. Finally, we identified an amino acid motif in the RgpA catalytic domain of P. gingivalis that shares sequence homology with type II collagen. CONCLUSION: We conclude that pre-immunization against gingipain domains can reduce the severity of experimentally induced arthritis. We suggest that targeting gingipain domains by pre-immunization, or, possibly, by small-molecule inhibitors, could reduce the potential of P. gingivalis to translocate to remote tissues and instigate and/or exacerbate pathology in RA, but also in other chronic inflammatory diseases.


Assuntos
Artrite/terapia , Cisteína Endopeptidases Gingipaínas/antagonistas & inibidores , Porphyromonas gingivalis/enzimologia , Proteínas Recombinantes/farmacologia , Animais , Domínio Catalítico , Humanos , Ratos
11.
Nanomaterials (Basel) ; 10(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120987

RESUMO

One of the contributors to the published paper [1] did not provide permission for the datapresented to be published and we have therefore taken the decision to retract the paper [...].

12.
J Biol Chem ; 294(52): 20177-20184, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31732563

RESUMO

Apoptosis has emerged as a primary cause of tendinopathy. CD44 signaling pathways exert anti-apoptotic and -inflammatory effects on tumor cells, chondrocytes, and fibroblast-like synoviocytes. The aim of this study was to examine the association among CD44, apoptosis, and inflammation in tendinopathy. Expression of CD44 and apoptotic cell numbers in tendon tissue from patients with long head of biceps (LHB) tendinopathy were determined according to the histological grades of tendinopathy. Primary tenocytes from Achilles tendon of Sprague-Dawley rats 1 week after collagenase injection were cultured with an antagonizing antibody against CD44. Treatment responses were determined by evaluating cell viability and expression of tendon-related proliferation markers, inflammatory mediators, and apoptosis. The expression of CD44 and apoptosis were positively correlated with the severity of tendinopathy in the human LHB tendinopathy. Furthermore, CD44 expression and apoptotic cells were co-stained in tendinopathic tendon. Blocking the CD44 signaling pathways in rat primary tenocytes by OX-50 induced cell apoptosis and the elevated levels of cleaved caspase-3. Furthermore, they had decreased cell viability and expression of collagen type I, type III, tenomodulin, and phosphorylated AKT. In contrast, there were elevated levels of inflammatory mediators, including interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, cyclooxygenase-2, and phosphorylated NF-κB, as well as matrix metalloproteinase (MMP) family members including MMP-1, -3, -9, and -13 in tenocytes upon OX-50 treatment. This study is the first to demonstrate the association of CD44 and apoptosis in tendinopathy. Our data imply that CD44 may play a role in tendinopathy via regulating apoptosis, inflammation, and extracellular matrix homeostasis.


Assuntos
Apoptose , Receptores de Hialuronatos/metabolismo , Mediadores da Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Anticorpos/imunologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Masculino , Metaloproteinases da Matriz/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/toxicidade , Tendinopatia/metabolismo , Tendinopatia/patologia , Tenócitos/citologia , Tenócitos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Nanomaterials (Basel) ; 9(6)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234583

RESUMO

Accumulated evidence suggests a pathogenic role of reactive oxygen species (ROS) in perpetually rheumatoid joints. Therefore, the application of radical scavengers for reducing the accumulation of ROS is beneficial for patients with rheumatoid arthritis (RA). We synthesized water-soluble fullerenols that could inhibit the production of ROS and applied intra-articular (i.a.) injection in an experimental arthritis model to examine the anti-arthritic effect of the synthesized compound. RAW 264.7 cells were used to examine the activity of the synthesized fullerenol. Collagen-induced arthritis (CIA) was induced in Sprague-Dawley rats by injecting their joints with fullerenol. The therapeutic effects were evaluated using the articular index as well as radiological and histological scores. Dose-dependent suppression of nitric oxide (NO) production caused by the fullerenol was demonstrated in the RAW 264.7 cell culture, thus confirming the ability of fullerenol to reduce ROS production. In the fullerenol-injected joints, articular indexes, synovial expression of ROS, histological and radiological scores, pannus formation, and erosion of cartilage and bone were all reduced. Moreover, interleukin (IL)-1ß and vascular endothelial growth factor (VEGF) levels were reduced, and fewer von Willebrand factor (vWF)-stained areas were identified in the fullerenol-treated joints than in control joints. The i.a. injection of fullerenol for reducing ROS production can ameliorate arthritis in joints by suppressing pro-inflammatory cytokine production and the angiogenesis process. Thus, the i.a. injection of fullerenol for reducing the production of ROS can be used as a pharmacological approach for RA patients.

14.
Clin Rheumatol ; 38(5): 1361-1366, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30767092

RESUMO

Elevated IL-17 levels with higher Th17 numbers are identified in systemic lupus erythematosus (SLE). STAT3 signaling plays a crucial role in the Th17 generation, and SOCS3 negatively regulates their formation. We investigated IL-17, STAT3, and SOCS3 expression, and analyzed their correlations to elucidate the regulatory mechanisms of IL-17 production in SLE. This study enrolled 32 patients, and venous mononuclear cells (MNCs) were isolated with further purification of CD4-positive T cells. IL-17 and SOCS3 levels were measured by real-time quantitative PCR, and pSTAT3/STAT3 expression was analyzed by immunoblot. Elevated IL-17 and SOCS3 levels were identified in lupus patients. There were higher IL-17 levels in lupus nephritis (class IV) than in SLE without renal involvement. Positive correlations were found between IL-17 levels and SOCS3 expression, lupus activity (SLEDAI-2K), or daily proteinuria. There were higher intensities of pSTAT3/ß-actin and STAT3/ß-actin in SLE, and a positive correlation between IL-17 expression and pSTAT3/ß-actin or STAT3/ß-actin intensity. Lupus nephritis (class IV) had higher STAT3/ß-actin intensity than SLE without renal involvement. These results suggest upregulated STAT3/IL-17 expression in lupus patients. Such findings might facilitate the development of novel compounds and the application of existing therapeutics targeting the STAT3/IL-17 signal in SLE.


Assuntos
Interleucina-17/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Feminino , Citometria de Fluxo , Humanos , Interleucina-17/genética , Leucócitos Mononucleares/metabolismo , Modelos Lineares , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Masculino , Fator de Transcrição STAT3/genética , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Taiwan , Células Th17/imunologia , Regulação para Cima
15.
PLoS One ; 13(10): e0204603, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296306

RESUMO

Female-dominant tendinopathies are musculoskeletal disorders caused by repetitive hand posture and motion; they are considered overuse syndromes. Both external mechanical stress and changes in hormone levels might affect disease progression. We have previously reported that estrogen receptor-ß (ER)-ß expression was associated with the pathogenesis of de Quervain's disease. To study the underlying mechanisms, a cyclic stretching culture system was applied to tendon tissue from ovariectomized (OVX) rats. Furthermore, a collagenase I-induced rat tendinopathy model was established to examine the association of ER-ß with disease progression. Our results showed that ER-ß expression and the number of apoptotic cells were higher and associated with disease severity in rats with tendinopathy. Mechanical stress altered the morphology of primary tenocytes and collagen fiber alignment in tendons, and up-regulated the expression of matrix metalloproteinase-9, ER-ß, and interleukin-1ß, as well as induced apoptosis in tenocytes and tendon tissue from OVX rats. This is the first report on the effects of ER-ß and mechanical stress in tendinopathy. We hope these findings contribute to new pharmacological therapies targeting ER-ß signaling pathways to treat tendon-related diseases.


Assuntos
Apoptose/fisiologia , Transtornos Traumáticos Cumulativos/metabolismo , Receptor beta de Estrogênio/metabolismo , Tendinopatia/metabolismo , Animais , Células Cultivadas , Colágeno/metabolismo , Colagenases , Transtornos Traumáticos Cumulativos/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Interleucina-1beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ovariectomia , Ratos Sprague-Dawley , Estresse Mecânico , Tendinopatia/patologia , Tendões/metabolismo , Tendões/patologia , Técnicas de Cultura de Tecidos
16.
J Nanobiotechnology ; 16(1): 1, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321058

RESUMO

BACKGROUND: The results showed that the deciding factor is the culture medium in which the bacteria and the graphene oxide (GO) are incubated at the initial manipulation step. These findings allow better use of GO and GO-based materials more and be able to clearly apply them in the field of biomedical nanotechnology. RESULTS: To study the use of GO sheets applied in the field of biomedical nanotechnology, this study determines whether GO-based materials [GO, GO-polyoxyalkyleneamine (POAA), and GO-chitosan] stimulate or inhibit bacterial growth in detail. It is found that it depends on whether the bacteria and GO-based materials are incubated with a nutrient at the initial step. This is a critical factor for the fortune of bacteria. GO stimulates bacterial growth and microbial proliferation for Gram-negative and Gram-positive bacteria and might also provide augmented surface attachment for both types of bacteria. When an external barrier that is composed of GO-based materials forms around the surface of the bacteria, it suppresses nutrients that are essential to microbial growth and simultaneously produces oxidative stress, which causes bacteria to die, regardless of whether they have an outer-membrane-Gram-negative-bacteria or lack an outer-membrane-Gram-positive-bacteria, even for high concentrations of biocompatible GO-POAA. The results also show that these GO-based materials are capable of inducing reactive oxygen species (ROS)-dependent oxidative stress on bacteria. Besides, GO-based materials may act as a biofilm, so it is hypothesized that they suppress the toxicity of low-dose chitosan. CONCLUSION: Graphene oxide is not an antimicrobial material but it is a general growth enhancer that can act as a biofilm to enhance bacterial attachment and proliferation. However, GO-based materials are capable of inducing ROS-dependent oxidative stress on bacteria. The applications of GO-based materials can clearly be used in antimicrobial surface coatings, surface-attached stem cells for orthopedics, antifouling for biocides and microbial fuel cells and microbial electro-synthesis.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/crescimento & desenvolvimento , Grafite/farmacologia , Polímeros/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Contagem de Colônia Microbiana , Fluorescência , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Espécies Reativas de Oxigênio , Espectrofotometria Ultravioleta
17.
Nanoscale ; 10(1): 109-117, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29211084

RESUMO

Nitrogen-doped graphene quantum dot (N-GQD) nanomaterials conjugated with polyethylenimine (PEI)-polystyrene sulfonate (PSS)-anti-epidermal growth factor receptor (AbEGFR) antibody (N-GQD-PEI-PSS-AbEGFR) demonstrated impressive two-photon properties and stability, signifying that they can serve as an effective two-photon contrast agent in two-photon bioimaging. Furthermore, they provided high intensity, brightness, and signal-to-noise ratios at an ultra-low two-photon excitation (TPE) power level in an observation extending to a deep, three-dimensional depth.


Assuntos
Grafite/química , Luminescência , Nitrogênio/química , Pontos Quânticos/química , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Humanos , Fótons , Polímeros
18.
Sci Rep ; 7(1): 8708, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821728

RESUMO

Few studies discuss kinetic changes in tendinopathy models. We propose a customized corridor to evaluate dynamic weight bearing (DWB) and shearing forces. Sixty rats were randomly given ultrasound-assisted collagenase injections (Collagenase rats) or needle punctures (Control rats) in their left Achilles tendons, and then evaluated 1, 4, and 8 weeks later. The Collagenase rats always had significantly (p < 0.001) higher histopathological and ultrasound feature scores than did the Controls, significantly lower DWB values in the injured than in the right hindlimbs, and compensatorily higher (p < 0.05) DWB values in the contralateral than in the left forelimbs. The injured hindlimbs had lower outward shearing force 1 and 4 weeks later, and higher (p < 0.05) push-off shearing force 8 weeks later, than did the contralateral hindlimbs. Injured Control rat hindlimbs had lower DWB values than did the contralateral only at week 1. The Collagenase rats had only lower static weight bearing ratios (SWBRs) values than did the Controls at week 1 (p < 0.05). Our customized corridor showed changes in DWB compatible with histopathological and ultrasound feature changes in the rat tendinopathy model. The hindlimb SWBRs did not correspond with any tendinopathic changes.


Assuntos
Técnicas Biossensoriais , Tendinopatia/fisiopatologia , Tendão do Calcâneo/patologia , Tendão do Calcâneo/fisiopatologia , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Marcha , Membro Posterior/patologia , Membro Posterior/fisiopatologia , Cinética , Ratos , Reprodutibilidade dos Testes , Tendinopatia/diagnóstico por imagem , Tendinopatia/patologia , Suporte de Carga
19.
Sci Rep ; 7: 46050, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393847

RESUMO

Non-union occurring in structural bone grafting is a major problem in allograft transplantation because of impaired interaction between the host and graft tissue. Activated toll-like receptor (TLR) induces inflammatory cytokines and chemokines and triggers cell-mediated immune responses. The TLR-mediated signal pathway is important for mediating allograft rejection. We evaluated the effects of local knockdown of the TLR4 signaling pathway in a mouse segmental femoral graft model. Allografts were coated with freeze-dried lentiviral vectors that encoded TLR4 and myeloid differentiation primary response gene 88 (MyD88) short-hairpin RNA (shRNA), which were individually transplanted into the mice. They were assessed morphologically, radiographically, and histologically for tissue remodeling. Union occurred in autografted but not in allografted mice at the graft and host junctions after 4 weeks. TLR4 and MyD88 expression was up-regulated in allografted mice. TLR4 and MyD88 shRNAs inhibited TLR4 and MyD88 expression, which led to better union in the grafted sites. More regulatory T-cells in the draining lymph nodes suggested inflammation suppression. Local inhibition of TLR4 and MyD88 might reduce immune responses and ameliorate allograft rejection.


Assuntos
Aloenxertos/metabolismo , Transplante Ósseo , Técnicas de Silenciamento de Genes , Rejeição de Enxerto/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Fêmur/transplante , Inativação Gênica , Lentivirus/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos T Reguladores/metabolismo , Transplante Homólogo , Cicatrização
20.
Biomaterials ; 120: 185-194, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28063357

RESUMO

Reactive oxygen species is the main contributor to photodynamic therapy. The results of this study show that a nitrogen-doped graphene quantum dot, serving as a photosensitizer, was capable of generating a higher amount of reactive oxygen species than a nitrogen-free graphene quantum dot in photodynamic therapy when photoexcited for only 3 min of 670 nm laser exposure (0.1 W cm-2), indicating highly improved antimicrobial effects. In addition, we found that higher nitrogen-bonding compositions of graphene quantum dots more efficiently performed photodynamic therapy actions than did the lower compositions that underwent identical treatments. Furthermore, the intrinsically emitted luminescence from nitrogen-doped graphene quantum dots and high photostability simultaneously enabled it to act as a promising contrast probe for tracking and localizing bacteria in biomedical imaging. Thus, the dual modality of nitrogen-doped graphene quantum dots presents possibilities for future clinical applications, and in particular multidrug resistant bacteria.


Assuntos
Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Microscopia de Fluorescência/métodos , Fotoquimioterapia/métodos , Pontos Quânticos/uso terapêutico , Nanomedicina Teranóstica/métodos , Anti-Infecciosos/administração & dosagem , Rastreamento de Células/métodos , Grafite/uso terapêutico , Medições Luminescentes/métodos , Nitrogênio/química , Fármacos Fotossensibilizantes/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...